Definition and classification of the cardiomyopathies Georgios K Efthimiadis

Ass Prof of Cardiology

Historical Context

- WHO: 1980 classification

 "heart muscle diseases of unknown cause"
- WHO 1995 classification
 - "diseases of myocardium associated with cardiac dysfunction"

How should we define cardiomyopathies?

BASED ON

```
origin?
```

anatomy?

physiology?

biopsy histopathology?

genetics?

Based on Origin

DILATED CARDIOMYOPATHY

- Idiopathic
- Familial/Genetic
- Viral
- Immune
- Alcoholic/Toxic

Based on Anatomy

HCM

Cardiac amyloidodis

Based on physiology (Filling Pattern)

Based on physiology (restrictive pattern)

Based on physiology

- Restrictive cardiomyopathy
- Hypertrophic-restrictive cardiomyopathy
 Restrictive filling pattern

Based on biopsy histopathology ARVC

Based on biopsy histopathology HCM

DCM, male, 44-y-old

<u>Light microscopy</u>: Two myocardial samples with severe interstitial and endocardial fibrosis. Myocytes with irregular profiles, focal hypertrophia and myofibrillar lysis. No myocarditis; no extracellular accumulation; no endocardial thrombosis.

<u>Ultrastructural findings on electron microscopic study</u>: One myocardial sample from paraffin-embedded tissue processed for electron microscopy. Myocytes: myofibrillar lysis, mitochondrial cristolysis, lipid droplets, nuclei with irregular profiles. Interstitium: fibrosis with dense collagen bundles, absence of inflammatory cells. No extracellular accumulation.

Histology: Two myocardial showing findings similar to A, with sparse and focal inflammatory cells in one sample.

<u>Ultrastructural findings on electron microscopic study</u>: One myocardial sample showing findings similar to A, with more pronounced myofibrillar lysis. No amyloid.

Findings consistent with cardiomyopathy

Eloisa Arbustini

Classification Based Mainly on Molecular Genetics

B-myosin heavy chain gene mutations DCM HCM

DCM HCM

Disease-causing mutations in the human beta-cardiac Myosin Heavy Chain gene

- 194 hypertrophic cardiomyopathy mutations
- 13 dilated cardiomyopathy mutations
- 7 other mutations
- 7 variants of uncertain effect
- 15 polymorphisms

Circulation. 2006;113:1807-1816

- AHA Scientific Statement
- Contemporary Definitions and Classification of the Cardiomyopathies
- An American Heart Association Scientific Statement From the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention
- Barry J. Maron, MD, Chair; Jeffrey A. Towbin, MD, FAHA; Gaetano Thiene, MD; Charles Antzelevitch, PhD, FAHA; Domenico Corrado, MD, PhD; Donna Arnett, PhD, FAHA; Arthur J. Moss, MD, FAHA; Christine E. Seidman, MD, FAHA; James B. Young, MD, FAHA

AHA: Definition of Cardiomyopathies

- Cardiomyopathies are a heterogeneous group of diseases of the myocardium associated with
- mechanical
- and/or electrical dysfunction
- that usually (but not invariably) exhibit inappropriate ventricular hypertrophy or dilatation
- and are due to a variety of causes that frequently are genetic.
- Cardiomyopathies either are confined to the heart or are part of generalized systemic disorders, often leading to cardiovascular death or progressive heart failure—related disability.

New definition: basic characteristics

- mechanical dysfunction (diastolic or systolic dysfunction)
- electrical dysfunction (life-threatening arrhythmias)
- ion channelopathies (long-QT syndrome, Brugada syndrome)
- no histopathological abnormalities
- abnormalities at the molecular level in the cell membrane

Entities excuded from the new definition

pathological myocardial processes and dysfunction that are a direct consequence of

- valvular heart disease
- systemic hypertension
- congenital heart disease
- atherosclerotic coronary artery (ischemic cardiomyopathy)
- metastatic and primary intracavitary or intramyocardial cardiac tumors
- diseases affecting endocardium with little or no myocardial involvement
- hypertensive HCM.

AHA: Classification of Cardiomyopathies

Primary cardiomyopathies

- solely or predominantly confined to heart muscle genetic, nongenetic, acquired
- Secondary cardiomyopathies
- pathological myocardial involvement as part of a large number and variety of generalized systemic (multiorgan) disorders
- old definition: "specific cardiomyopathies" or "specific heart muscle diseases"

Hypertrophic Cardiomyopathy

Definition: Myocardial hypertrophy in the absence of any other cause capable to produce the magnitude of hypertrophy present

Incidence: 0.2% (1/500)

HYPERTROPHIC CARDIOMYOPATHY diagnosis

- 1. Echo: maximal wall thickness>14mm
- 2. Maximal wall thickness=14 or 13 mm ECG changes compatible with HCM Positive family history
- 3. No hypertrophy
 Positive family history and abnormal ECG
- 4. Gross ECG abnormalities

Hypertrophic Cardiomyopathy

- firstly described by Teare in 1958
- incidence of familial form: 60-70% with autosomal dominant pattern of inheritance
- Remaining cases: sporadic
- Variable penetrance: phenotype positive/ genotype positive

Familial Hypertrophic Cardiomyopathy

Disease of sarcomere characterized by mutations in the genes coding for contractile and regulatory proteins of contraction (H. Watkins)-1990

>500 HCM-causing gene mutations

(Sarcomere protein gene mutation data base available at:http://www.cardiogenomics.med.harvard.edu)

Genes Responsible for Human Hypertrophic Cardiomyopathy

Gene	# Mutations	Incidence
b-myosin heavy chain	194	30-50%
myosin binding protein C	149	30-50%
cardiac-troponin T	31	4%
cardiac-troponin I	27	4%
a-tropomyosin	11	5%
essential myosin light chain	10	1%
regulatory myosin light chai:	n 5	1%
cardiac- actin	7	1%

Non-Sarcomeric Genes Responsible for Human Hypertrophic Cardiomyopathy

- gene for muscle LIM protein (MLP)
- The genes encoding the gamma-2 regulatory subunit of adenosine monophosphate-activated protein kinase (PRKAG2)
- the gene encoding lysosome-associated membrane protein 2 (LAMP2)
- The gene for titin
- The gene for the protein titin-cap (T-cap/telethonin)

Gene Mutation Forms in Familial Hypertrophic Cardiomyopathy

- Missense (δυσυνθετικές)
- Deletions (ελλείψεις)
- Insertions (προσθήμες)
- Truncated (ακρωτηριαστικές)

B-Myosin Heavy Chain Gene

Codon

AATCGTATGC{TAC}TGTGCATAATCG...

exon

22.000 bp

A: Adenine

T:Thymine

C:Cytocine

G:Guanine

B-Myosin Heavy Chain Gene

EXON 23

codon 403

AATGCATGCTTGAGTCTGAC:MHC gene

B-Myosin Heavy Chain Gene

```
EXON 23
 codon 403
AATGCATGCTTGAGTCTGAC:MHC gene
    TAC.....mutant gene
  .......B-MHC protein
 Arg403Gln
```

B-Myosin Heavy Chain Gene

```
EXON 23
 codon 403
AATGCATGCTTGAGTCTGAC: b-MHC gene
    TAC.....mutant gene
.....b-MHC protein
 Arg403Gln
```

1. ASH

2. IHSS or Obstructive HCM

3. Apicai or Japanese HCM

4. Mid-cavity HCM A=aneurysm

Healthy Carriers in HCM

- Up to 30% of genetically affected adults, are not identified by conventional criteria (Healthy Carriers)
- The majority of them will develop some form of HCM before the age of 50 years

HCM pathophysiology

Clinical assessment

Sarcomeric protein None defect ↓ Myofibrilar shortening Doppler, TVI ECG Disarray Hypertrophy Echo

Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia

- **1:5000**
- involves predominantly the right ventricle with progressive loss of myocytes and fibrofatty tissue replacement

Pathogenesis

- The replacement of the right ventricular myocardium by fibrofatty tissue is progressive (epicardium or midmyocardium and then transmural)
- Progression then leads to wall thinning and aneurysms, typically located at the inferior, apical, and infundibular walls (so-called triangle of dysplasia), the hallmark of ARVC

ECG IN ARVC

Dilated Cardiomyopathy

Increased ventricular chamber size with reduced contractility in the absence of CAD, valvulopathy, pericardial disease.

Prevalence: 40/100.000 persons

Natural history: • heart failure

- leading cause
 of heart transplantation
- high rate of SCD
- high mortality rate: 50%5 years after initial diagnosis

ECHO

DILATED CARDIOMYOPATHY

- Idiopathic
- Familial/Genetic
- Viral
- Immune
- Alcoholic/Toxic

Familial Dilated Cardiomyopathy (FDC)

- Incidence: 50% (familial history)
- Patterns of inheritance: autosomal dominant

autosomal recessive

X-linked

matrilineal (mitochondrial DC)

The phenotype can be characterized

- by an isolated cardiac dysfunction (isolated DCM)
- or include conduction defects (atrioventricular block or sinus node dysfunction)
- and/or skeletal muscular disorders

Sarcomere

ß-Myosin heavy chain (MYH7)

Troponin T (TNNT2)

Troponin I (TNNI3)

Troponin C (TNNC1)

Cardiac -actin (ACTC)

Tropomyosin (TPM1)

Myosin-binding protein C (MYBPC3)

Sarcomere and Z-disc associated proteins

- Titin (TTN)
- Titin-cap/telethonin (TEL)
- Muscle LIM protein (CRP3)
- Metavinculin (VCL)
- Cypher/ZASP (LDB3)

Cytoskeleton

- Dystrophin (DMD)
- Sarcoglycan(SGCD)
- Intermediate filaments
 Desmin (DES)
 Lamin A/C (LMNA)

Channel and channelassociated proteins

- Cardiac sodium channel (SCN5A)
- ATP-sensitive potassium channel (SUR2A/ABCC9)
- Phospholamban (PLN)

Mitochondria

■ Tafazzin (*G4.5*)

- Cardiomyopathies laboratory, AHEPA Hosp
- D. Parcharidou
- V. Kamperidis
- E. Pagourelias
- T. Gossios
- G. Efthimiadis